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The method of determining corrections to neutron time-of-flight diffraction data by Monte Carlo tech- 
niques is costly since a large range of neutron wavelengths must be considered. An optimized simulation is 
presented in which many wavelengths are considered simultaneously, while paths are traced only once for 
all wavelengths. Collision positions and scattering angles are selected from cumulative distribution func- 
tions representing all neutron wavelengths simulated. The scattered intensity is computed by weighting 
the simulated paths to account for the probability of their occurrence for each wavelength. The results of 
a calculation for a vanadium slab are given as an example. 

I. Introduction 
In the previous paper (Mildner, Pelizzari & Carpenter, 
1977) a simple but optimized Monte Carlo simulation 
of a neutron diffraction experiment was presented so 
that multiple scattering corrections could be estimated. 
This program is most suitable for the 'reactor' experi- 
ment in which a beam of neutrons with a unique wave- 
length obtained from a crystal monochromator  is 
scattered by the specimen, and the diffracted intensity 
is measured as a function of scattering angle. Following 
the Bischoff (1970) algorithm, it is natural to think of 
calculating the scattering and escape probabilities for 
each of many scattering angles at each collision point 
on the path of a neutron of given wavelength. However 
to apply a multiple-scattering correction to time-of- 
flight diffraction data, it is necessary to perform the 
simulation for the large range of wavelengths available 
to the diffractometer, but at only one or perhaps a 
small number of scattering angles. Since correction 
factors are required as a function of scattering vector 
Q, this operation becomes formidable and judicious 
choices of neutron wavelengths are required to reduce 
computing time. The simulation is performed for a 
certain number of values of Q (and hence wavelengths), 
with a higher density of points in regions of Q where 
the structure factor S(Q) varies greatly. (An example of 
the computation of multiple scattering corrections for 
time-of-flight diffraction of an isotropic system is given 
in the previous paper, and shows that the correction 
factor is not featureless). However, we describe here a 
method by which this operation may be made more 
efficient. 

* Based on work performed in part under the auspices of the US 
Energy Research and Development Administration and in part by 
NSF Grant GK 35901. 

i" Present address: Research Reactor Facility, University of Mis- 
souri, Columbia, Missouri 65201, USA. 

In the case of the unique wavelength simulation of 
the conventional diffraction experiment, the positions 
of the scattering events and the directions of scatter are 
determined from the cumulative distribution functions 
of path lengths and scattering angles for that particular 
wavelength. However in this work we present a simula- 
tion in which a "neutron' does not have a unique wave- 
length, but rather there are many wavelengths as in a 
diffraction experiment using a pulsed neutron source. 
Once generated, the paths are assumed to be travelled 
by neutrons having as many wavelengths as desired. 
One way to approach an optimized simulation is to 
select collision positions and scattering angles from 
cumulative distribution functions for some weighted 
distribution of neutron wavelengths, and to calculate 
the detector scores with this distribution taken into 
account. The basic ideas of the Monte Carlo computa- 
tions of Bischoff (1970) have been extended, for instead 
of thinking of the simulation as one which follows 
'neutrons', it is more efficient to consider the simulation 
as one which generates paths in the scatterer, while 
probabilities of various events are computed for many 
neutron wavelengths for each path. 

The time-of-flight diffraction experiment uses a con- 
tinuous distribution of neutron wavelengths which are 
scattered into various detectors at particular scattering 
angles, and the experiment is analyzed by time-of-flight 
techniques in order to obtain a scattered intensity as a 
function of scattering vector. For a neutron of a par- 
ticular wavelength 2i scattered elastically through an 
angle 0r, the corresponding scattering vector Qi~ is 
given by 

Qi.i = 4rt/2i sin o j/2. (1) 

Rather than consider a continuous distribution of 
wavelengths, the simulation considers particular wave- 
lengths each with its own relative weighting factor. 



D. F. R. M I L D N E R  A N D  J. M. C A R P E N T E R  963 

Comments on the choice of these factors are left until 
later. 

The reader is referred to the earlier paper for details 
common to the unique-wavelength and the present 
multi-wavelength calculations. 

G(im) (__ R,.G(t.) < G(I,. + 1) . (7) 

Then the distance between successive collision points 
is given by 

lm<ln<lm+l (8) 

2. Scattering path length distribution 

Throughout the simulation collision points within the 
sample must be chosen which reflect the relative im- 
portance of each wavelength 2~ with its own total cross 
section ZT(2i). We refer to Fig. 1 of the previous paper. 
The distance l, from the previous scattering point to 
the nth collision point is chosen from the distribution 

fO" F(I,) = ~i wi exp [ -Zr (2 i ) l ]d l  

I 
t .  

w, exp [ -  Z.t{2;)l]dt 
0 

(2) 

where t. is the maximum distance that the neutron can 
travel within the sample in the direction ~ .  which was 
obtained at the previous, (n-1) th ,  scattering point. 
The summation extends over all wavelengths 2, each 
with its relative weighting factor wi. Performing the 
integrals, we obtain the path length distribution func- 
tion 

2 Wi/ff'l"()'i){ 1 - - e x p  [- Zr(2,)l.]} 
F(I.)= 

w,/ZT()q){ 1 --exp [-- Zr().,)t.]}" 
(3) 

So that the selection of the collision point is done op- 
timally, prior to the running of the neutron histories an 
array G(I) must be set up with the elements 

G(/)= ~ W,/ZT(2,){1 --exp [-- Zr(2,)l]} (4) 
i 

for incremental values of / in  steps of A l, with the maxi- 
mum value of I at least as large as the greatest possible 
length within the sample under discussion. Then the 
cumulative path length distribution function is given by 

F(I,)=G(t,)/G(t,) . (5) 

When a random number Rz, has been selected, the 
determination of the collision point is performed by 
searching through G(l) until a value l,. is found for 
which 

and, by linear interpolation, 

R~.G(t,)-G(tm) 
l .=l , .+ Al G(lm+ 1)-G(lm) " (9) 

Since all the scattering events are forced to occur 
within the sample, and since the path length distribu- 
tion function given by (3) is not exact for any particular 
wavelength, then the worth of each 'neutron' must be 
modified after each collision point has been selected. 
The modification factor accounts for the procedure of 
selecting the scattering path lengths from the distribu- 
tion, and is equal to the ratio of the true probability of 
reaching the selected scattering point to the probability 
that the scattering path length is drawn from the dis- 
tribution. However the factors are not simple since the 
distribution from which the collision points are se- 
lected is not uniform; on the other hand, the random 
numbers from which the path lengths are chosen are 
selected from a uniform distribution. The random 
number Rt. in the interval (0,1) is made equal to the 
cumulative distribution F(l.) for the path length l,, so 
that 

R~,,= F(I,,) = G(l,)/G(t,). (10) 

Then the probability that the scattering path length I, 
is selected is given by 

dRt. dF(/.) 1 G(I,,) 
dl, dl, G(t.) ~l ,"  

(11) 

The true probability of a neutron of wavelength/]'k scat- 
tering at a distance I, is given by Z~(2k) exp [-- Zr()~k)l,], 
SO that the factor H.k by which the 'neutron' worth of 
each wavelength 2k is modified to account for the 
method of selection of the nth scattering path is given 
by 

ff, s(,~k) exp [ -  ff, T()~k)ln] (12) 
Hnk = 1 OG(I.) 

G(t,) 01. 

Fortunately the array G(l) is defined explicitly in terms 
of ! by (4), so that the factor H.k may be expressed as 

Hnk = 

Xs(2k) exp [ - Z r(2k)/,] ~ W,/Z r(2,){ 1 -- exp [ -- Xr(2,)t.] } 
i 

y' w, exp [ -  Zr(2,)l.] 
i 

(13) 

F(lm)< R~,, < F(I.,+ 1) , (6) 

as shown schematically in Fig. 2 of the previous paper. 
That is 

Then for the unique 2 case, this factor reduces to 

Zs(2k) {1 --exp [--Zr(2k)t.]} 
~'T(Ak) 
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which is identical to that found in the unique wave- 
length simulation, where { 1 - exp [ -  ST(2k)t,] } is the 
non-escape probability for the neutron of wavelength 
2k within the distance t, and the factor S~(2k)/ZT(2k) is 
the probability that the collision is a scattering process. 

3. Scattering angle distribution 

At each collision point in the simulation a scattering 
angle must be chosen which reflects the relative im- 
portance of each wavelength ;~ with its own differential 
cross section t3tr/0f2(2~). The scattering angle 0, at the 
nth scattering event is chosen from the distribution 

where we have included the square of the scattering 
length in our S(Q). (15) may be written 

g(0,,)=(1/2rt) ~ )-" (v,22)S(Q,j)Q,jAQij. (20) 
j = l  i 

Though it is advantageous to use S(Q) as a function of 
Q rather than to use Oa(Oj, 2~)/~3f2 as input to the calcula- 
tion, a given scattering angle of course gives a different 
Q for each wavelength. Consequently the array element 
g(0,,) is expressed in terms of S(Qk) (assumed to be 
tabulated on intervals AQk) and within the summation 
of wavelengths 2~ the sum on Qk runs to the limit 
Q~,(~.~) which is a function of 2~; that is, 

f On CO" 
~.vi (0',2i) sin 0'd0' b-6 

f(0,) = ' o (14) 

f '~ 0o- 
~.vi (0',2i) sin 0'd0' 

• 0 

Note that there is no reason that the relative weighting 
factors vi used in computing f(O,) must be the same as 
the wi used for computing F(l,). Though it may be 
natural, lacking any compelling reason otherwise, to 
make them equal, we maintain generality by keeping 
them unequal. 

For any particular scattering angle Oj, the corre- 
sponding scattering vector Qij is a function of wave- 
length 2~ given by (1); hence the selection of the scatter- 
ing angle cannot be obtained by a simple summation 
of the first moment of the diffraction pattern as in the 
unique-wavelength case. Again prior to the running 
of the neutron histories, an array g(0) must be set up 
with elements 

m 
g(0m) = 2rt ~. vi ~ c~tr 

• j = ~ 8--~ (O j, 2~) sin OjA Oj (15) 

where AOj is the incremental step in the value of 0m. 
Then the cumulative scattering angle distribution 
function is given by 

f(0,) = g(0,)/g(~t), (16) 

where the maximum value of the array is 

g(rt) = 2rt ~ vi ~-ff (0j,)~) sin OjA Oj = Z v~a~(2i). (17) 
i • j = l  i 

Since diffraction data are usually expressed as functions 
of scattering vector Q rather than scattering angle 0 
(conventional diffraction) or wavelength 2 (time-of- 
flight diffraction), we recast the above functions in 
terms of the scattering vector rather than the scattering 
angle. From (1), we obtain 

Qij A Qij = 4rr2/2/2 sin O iA Oj. (18) 

The differential cross section Oa(O, 2)/0f2 and the struc- 
ture factor S(Q) are related by 

0a 
~f2 (0j, 2~) = S(Qij), (19) 

g(0,,) = (1/2~t) ~ (v,)~ 2) ~ S(QR)QRAQR, 
i k 

k such that 0_< QR <-- Q~.(2i), 

(21) 

where 
Q~,(2/) = 4rt/2i sin 0~/2. (22) 

This function g(0,,,) needs to be computed only once 
before the summation and any mesh of Q and AQ can 
be dealt with. 

At the nth scattering event we select a random num- 
ber Ro., and the determination of the scattering angle 
is performed by searching through g(0,.) until a value 
0., is found for which 

f(Or,,)<- RO. < j(O,,,+ 1), (23) 

as shown schematically in Fig. 1. That is, 

g(0m) < R0.g(rt) < g(0m+ 1). (24) 

Then the scattering angle is given by 

0,, < 0, < 0m + 1 (25) 

and, by linear interpolation, 

R°"g( rc) - g( O") (26) O. = + A O 2 ?) " 

f(Qn) f (gn) - -  "~-R@n" RQ n 

I 

1 

f(o) f(o) 1 

0 gn ]~ ~ g 
0 Qn 2k --,-~-. Q 

Fig. 1. The selection of the nth scattering angle from the cumulat ive 
distr ibution of scattering angles, f (O),  and hence the corresponding 
wave vector transfer• 

f(Q f(o) 

t ~ 
f(2k) f l ' n ) -  
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Since the scattering angle distribution function given 
by (14) is not exact for any particular wavelength, then 
again the worth of each 'neutron' must be modified 
after each scattering angle has been selected. The mod- 
ification factor accounts for the procedure of selecting 
the scattering angle from the distribution, and is equal 
to the ratio of the true probability of scattering at the 
particular angle to the probability that the scattering 
angle is drawn from the distribution. Again, the factors 
are not simple since the distribution from which the 
scattering angles are selected is not uniform; on the 
other hand, the random numbers from which the 
scattering angles are chosen are selected from a uni- 
form distribution. 

The random number Ro. in the interval (0,1) is made 
equal to the cumulative distribution f(O.) for the scat- 
tering angle 0., so that 

Ro. = f(O.) = g(0.)/g(x). (27) 

Then the probability that the scattering angle 0. is 
selected is given by 

dRo. _ df(O.) _ 1 8g(0.). (28) 
d0. d0. g(rt) 80. " 

The true probability of a neutron of wavelength 2k 
scattering by an angle 0. is given by 

2~z 8a 
a~(2k) 8(2 (0., 2k) sin 0., 

so that the factor h.k by which the 'neutron' worth of 
each wavelength 2k is modified to account for the 
method of selection of the nth scattering angle is given 
by 

21r 8rT 
as(2k) 8(2 (0., 2k) sin 0. 

h.k= 1 8g(0.) (29) 

g(~) 80. 

The factor represents the modification to the weight 
to account for the fact that the scattering directions 
are chosen from the distribution f(O) rather than from 
the one correct for the wavelength '~k" If the chosen 
direction happens to be a particularly likely (or un- 
likely) one for 2k, then the neutrons on that path are 
weighted heavily (or lightly) compared to the weight 
built into the simulation through the distribution 
f(O). In fact the factor h,k may be greater than unity. 
Fortunately the array g(0,) is defined explicitly in terms 
of 0, by (15), so that the factor h.k may be expressed as 

2 ViCTs(~i) 
h.k-- i 8a(O.,2k)/S(2 

(Ts(2k) 2 1)iS(7(On'2i)/8~'~' (30) 
i 

or in terms of the corresponding scattering vector 

h.k-- i S(Q.,k) 
O'~(2k) ~ v,S(Q.,i)" (31) 

i 

For the unique-wavelength case, this factor reduces to 
unity, of course, since the scattering angles are selected 
from the correct distribution. 

It should be observed that throughout this simula- 
tion, it has been assumed that the scattering is inde- 
pendent of azimuthal angle ~p, and hence the distribu- 
tion of azimuthal angles is not only uniform but also 
independent of wavelength. Consequently the proba- 
bility of scattering with a particular azimuthal angle is 
equal to the probability that that azimuthal angle 
is drawn from the distribution of azimuthal angles. 
Hence the random number R~,., in the interval (0,1) 
uniquely determines the azimuthal angle tp. of the 
scattered direction after the nth scattering point by 

~p. = 2rtR~,.. (32) 

After each collision the weight of the history for each 
wavelength is adjusted: 

W~k = Wt,.- 1)kH.kh.k . (33) 

When Wok = 1/as(,~k) the computed scores represent 
the probabilities for scattering of neutrons of various 
wavelength into the detectors. 

4. Scoring 

Now the Monte Carlo simulation of paths needs be 
performed only once instead of N times, where N is 
the number of wavelengths that are being considered. 
Admittedly neither the scattering points nor the scat- 
tering angles are chosen optimally for any wavelength; 
but this has been compensated by modification factors 
or statistical weights in the 'neutron' worth. Never- 
theless this method provides a large saving in the com- 
puting time, since only one Monte Carlo simulation 
of an ensemble of paths is required. It is to be expected 
that a somewhat larger number of paths needs to be 
simulated in the multi-wavelength calculation than in 
the unique-wavelength case to obtain the required 
statistical accuracy; however this increase is not nearly 
a factor of N. 

To adapt the simulation of the monochromatic case 
to that for the pulsed source, arrays G(/) and g(0) must 
be set up. In addition various parameters must be given 
an extra dimension of N. Principally, this involves the 
scattering and total cross sections, the statistical 
weights of the neutrons of various wavelengths and also 
the scores of the various detectors. 

The score S.,k(0O) of the neutron of wavelength Ak 
scattering with n collisions into a detector at a scatter- 
ing angle 0o subtending an angle Afro at the sample is 
not dependent on the cumulative scattering distribu- 
tion at the nth scatter, but rather on the particular dif- 
ferential scattering probability po.(2k) given by 

pD.(2k)= Af2o 8tr 
tr~(2k) 8f2 (O°"'2k)' (34) 

where 0o. is the angle between the direction [1. before 
the nth scatter and the detector direction [~o; that is, 
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cos Oo,=~o .  ~.. This differential scattering proba- 
bility may be simply expressed by 

Af2o 
po,,(2k) = ~ S(Q°"), (35) 

where the scattering vector from direction ~ ,  into I~o 
for the wavelength ).k is given by 

Q°" = 4rr/2k sin (00,/2). (36) 

The score is also dependent  on the statistical weight 
14Z, k after the nth scattering posit ion has been chosen, 
and on the escape probabi l i ty  through a distance 
Lo,(r,, f~o) from the point  of scatter r,  to the edge of the 
target in the detector direction l'~o. Hence the score 
is given by 

(~n,k(0) = WnkPl)n(2k) exp [ - -  ~,T(,)~k)LDn]. (37) 

Throughou t  the simulation, the worth W n k  of a 'neu- 
t ron '  for each wavelength ' ~ k  becomes smaller at each 
collision. Since the simulat ion has not been optimized 
for any one neutron wavelength, it is necessary to 
compute  a weighted average of the neutron worth to 
determine the end of the history of the neutron.  This 
weighted average is given by 

shown in Fig. 3. Correct ion factors for at tenuat ion,  
multiple scattering and the net of both effects are 
shown in Fig. 4. Da ta  processed as though the scatter- 
ing were 'ideal'  (no a t tenuat ion or multiple scattering) 
are to be corrected by dividing by these factors. 

The same calculation was performed with the unique 
wavelength code, so as to determine the comput ing 
time savings. For  one wavelength, comput ing  time on 

F I0 cm "1 NEUTRON 

'i °m .J L. cm 

Fig. 2. The arrangement of vanadium sample, detector and neutron 
beam for which the scattering was calculated. It was assumed that 
a~ = 5"13 b atom-~ (constant and totally incoherent), a° (2200 m 
s- ~) = 5"06 b atom- ~, and that the number density ofscatterers was 
0.0722 atom b- ~ cm- ~ 

1.4xlO - t  

w,= E u, W, ff E u,, (38) k,.zx,o-" 
i i a . "  

° 

where ui is the relative weight of a part icular  wave- ~-" (~ IXIO -2 

length 2i. When the value of V¢~ falls below some cut-off ~,- 
value Wm~,,, then there is half chance of the neutron ~ 8,,o -~ 
history being terminated,  and a half chance that  the 
worth is increased by a factor of two. This method of ~ 6x,o-, 
Russian roulette discontinues a neutron 's  history E 
without  biasing the result of the simulation, i 4~,o-: 

There remains the problem of selecting the a priori ~- 
weighting factors w~,v~,u~, since they give the relative ,~ 2x,o-, 
importance of each wavelength in the simulation. 
Perhaps w~ should be propor t ional  to the absorpt ion 
cross section which is directly propor t ional  to the 
neutron wavelength. Presently these weighting factors 
are left in their most general form, and it may be that, 
lacking any special reason for choosing them in some 
other  way, the weighting factors should be chosen L4 
equally. 

5. Example calculation for a vanadium slab 

The scattering from a slab of vanadium [frequently 
used as a reference scatterer in time-of-flight (TOF) 
diffraction measurements]  was computed  using the 
T O F  optimized code for 25 wavelengths. The arrange- 
ment  calculated is shown in Fig. 2. The slab is large in 
extent and the beam spot small, in order to represent 
an 'infinite' slab. Cross sections assumed were as = 5"13 
b a t o m -  1 (constant and totally incoherent), aa (2200 m 
s -  1) = 5.06 b a t o m -  l, and the number  density of scat- 
terers 0"0722 a tom b -  t c m -  1. The 'ideal', single, mul- 
tiple and total scattering probabili t ies per unit solid 
angle (A On = 1 sterad) for scattering angle 0s = 30 ° are 

, , , , , , , , ,  , , , , , , ~ , ,  , , , , , , , ,  

SCATTERING PROBABILITIES FOR 
30"  SCATTERING ANGLE 

VANAO,U. SL. .   O..L . - "  
TOBEAM 

_ P z . . . . . . . . . . . . . . . . . .  

# i PT--" PI +Pw; TOTAL SCATTERING 

• P~ ; ONLY SINGLE SCATTERING 

, , , , , , , , ,  , , , , , , ,  

. . . . . . .  i'.o Q. ~_, _ _  Io ioo 

Fig. 3. "Ideal', single, multiple and total scattering probabilities per 
unit solid angle computed for a scattering angle of 30 °, for the 
arrangement of Fig. 2. 

C O l l E C T I O N '  FA(~T()iI~I' FOR . . . . . . . . . . . . . . . . .  

3 0  ° SCATTERING ANGLE 

1.2 VANADIUM NORMAL ?O BEAM 

b o ~ ,.o ~ R E  O.a 

0.6 P" CTION 

o 
u 0.4 • -~I(,+-~ll) ; TOTAL SCATTERING CORRECTION 

0.2 • "~z ; ATTENUATION CORRECTION 

o., . . . . . . . .  ,'.o . . . . . . . .  ,'o . . . . . . .  ,oo Q ~ - I  

Fig. 4. Correction factors for attenuation, multiple scattering and 
the net of both effects computed for a scattering angle of 30 <, for 
the arrangement of Fig. 2. 
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the Argonne Laboratory IBM 370/195 system was 
2.77 s; computing N wavelengths with this code would 
require 2.77 x N s. With the multi-wavelength code, the 
time was found to be (3-0+0"4 × N) s. Therefore the 
cost saving to compute for large numbers of wave- 
lengths is a factor of 2-77/0.4 = 7. 

6. Conclusion 

We have presented a method by which time-of-flight 
diffraction data may be simulated in order to obtain 
corrections for multiple scattering. In the multi-wave- 
length case, all we wish to do is avoid going through 
the Monte Carlo simulation for each wavelength indi- 
vidually, and instead to do it just once. The idea is to 
choose scattering points and directions from distribu- 
tions which represent somehow all the particular wave- 
lengths being considered, and then compute scores in 
detector directions in such a way as not to bias the 
results. Thus, each scattering point and direction is to 
be chosen from composite cumulative distributions of 
scattering points and scattering angles, and yet to com- 
pensate for their not being the exact distributions for 

any particular wavelength the worth of the 'neutron'  
must be modified for each wavelength after each selec- 
tion of scattering point and scattering angle. With the 
present methods, there is no constraint against accurate 
calculation of multiple scattering and attenuation cor- 
rections for time-of-flight diffraction measurement on 
isotropic materials, other than those imposed by the 
accuracy of input data. These ideas may be used for 
the determination of similar algorithms for the evalua- 
tion of inelastic scattering data using a spectrometer in 
an inverse geometry mode on a pulsed neutron source. 

We thank J. E. Gunning and C. A. Pelizzari for many 
useful discussions, and for essential help in the com- 
puting aspects of this work. 
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Utilisation des Param6tres de Stokes dans le Calcul de l'Etat de Polarisation d'un Faisceau 
de Rayons X Apr6s Diffraction par un Cristai Mosaique 

PAR F. VAmLANT 

Laboratoire de Cristallographie, CNRS,  Bofte Postale 166 X, Grenoble, France 

(Recu le 23 mai 1977, acceptO le 7 juin 1977) 

The polarization state of an X-ray beam diffracted by a mosaic crystal is determined. The state of the 
incident beam being described by four Stokes parameters, the matrix method used allows the calculation 
of the Stokes parameters of a monochromatic X-ray beam and it leads to a general expression of the 
polarization factor which can be used for any polarization state of the incident beam. 

Introduction 

Pour calculer l'intensit6 diffract6e par un cristal, on 
suppose presque toujours le rayonnement issu du tube 
comme non polaris6, en particulier lorsqu'on utilise 
comme source de rayons X la raie caract6ristique d'un 
616ment. Ce rayonnement peut &re alors consid6r6 
comme la somme de deux rayonnements polaris& 
perpendiculairement de m6me intensit6, et il est facile 
de calculer le facteur de polarisation quand on inter- 
pose un monochromateur  entre le cristal et la source 
de rayons X. Ce calcul a 6t6 fait de faqon compl6te 
lorsque le cristal et le monochromateur  sont id6alement 
imparfaits (Whittaker, 1953; Azaroff, 1955). 

Une onde 61ectromagn6tique et en particulier un 
faisceau de rayons X, est dite polaris& elliptiquement 

si le champ 61ectrique E associ6 fi cette onde peut 
s'6crire sous la forme: 

Ex = a cos (kz - cot) I 
E y = b c o s ( k z - c o t + 6 )  ) " (1) 

Ox, Oy, Oz dhfinissant un rephre orthonorm6, l'onde 
se propageant selon Oz. Un rayonnement polaris6 
elliptiquement est caracthris6 par quatre quantiths ap- 
pelhes paramhtres de Stokes fonction des amplitudes 
a et b et du dhphasage 6 

~f=a2 + b2, PI =aZ - b 2 ,  P2 =2ab cos 6, J9 3 =2ab sin 6 

t2) 

li6es par la relat ion/2 = p2 + p2 + p2 .  
Lorsque a=b  et 6=½tort avec m=+_(2n+ l ) ,  le 


